organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

4,4'-Trimethylenedipyridinium bis-[carboxymethylphosphonate(1–)]: a three-dimensional framework structure built from O— $H \cdots O$, N— $H \cdots O$ and C— $H \cdots O$ hydrogen bonds

Katharine F. Bowes,^a George Ferguson,^a⁺ Alan J. Lough^b and Christopher Glidewell^a*

^aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, and ^bLash Miller Chemical Laboratories, University of Toronto, Ontario, Canada M5S 3H6 Correspondence e-mail: cg@st-andrews.ac.uk

Received 27 May 2003 Accepted 28 May 2003 Online 22 July 2003

In the title compound, $C_{13}H_{16}N_2^{2+}\cdot 2C_2H_4O_5P^-$, the cation lies across a twofold rotation axis in space group *Fdd2*. The anions are linked into molecular ladders by two O-H···O hydrogen bonds [H···O = 1.73 and 1.77 Å, O···O = 2.538 (2) and 2.598 (3) Å, and O-H···O = 160 and 170°], these ladders are linked into sheets by a single type of N-H···O hydrogen bond [H···O = 1.75 Å, N···O = 2.624 (3) Å and N-H···O = 171°] and the sheets are linked into a threedimensional framework by a single type of C-H···O hydrogen bond [H···O = 2.48 Å, C···O = 3.419 (4) Å and C-H···O = 167°].

Comment

We have described recently the supramolecular structures of the adducts formed by carboxymethylphosphonic acid [phosphonoacetic acid, HOOCCH₂P(O)(OH)₂] with both 4,4'-bipyridyl (NC₅H₄-C₅H₄N), where a 1:1 adduct is formed, and 1,2-bis(4-pyridyl)ethane (NC₅H₄-CH₂CH₂-C₅H₄N), where a 1:2 adduct is formed (Bowes *et al.*, 2003). These two adducts are both salts, with constitutions C₁₀H₉N₂⁺·C₂H₄O₅P⁻ and C₁₂H₁₄N₂²⁺·2C₂H₄O₅P⁻, respectively. In the 4,4'-bipyridyl adduct, the anions form simple *C*(4) chains that are linked by the cations into sheets of $R_6^6(38)$ rings, which in turn are linked by pyridyl) adduct, on the other hand, the anions alone form sheets of alternating $R_2^2(12)$ and $R_6^6(28)$ rings, which are linked by the cations into a three-dimensional framework. Continuing this study, we have prepared and structurally

[†] Permanent address: Department of Chemistry, University of Guelph, Ontario, Canada N1G 2W1.

characterized the title compound, (I), the adduct formed between 4,4'-trimethylenedipyridine and carboxymethyl-phosphonic acid.

Compound (I) (Fig. 1) is a salt, $[HNC_5H_4(CH_2)_3C_5H_4-NH]^{2+}\cdot 2[HOOCCH_2P(O)_2(OH)]^-$, in which complete transfer of H atoms, to the N atom from one of the phosphonate O atoms, has occurred. The cation lies across a twofold rotation axis in space group *Fdd2* and, for the reference cation, this axis was selected as that along $(\frac{1}{2}, \frac{1}{2}, z)$. The anion lies in a general position. In the anion, the P–O and C–O distances (Table 1) are fully consistent with the H-atom locations deduced from difference maps. In the cation, the central C14–C17–C18– C17ⁱ–C14ⁱ fragment [symmetry code: (i) 1 – *x*, 1 – *y*, *z*] is effectively planar, with an all-*trans* conformation (Table 1), but the pyridinium ring is rotated out of this plane. All other bond lengths and angles have unexceptional values.

The ions are linked by a small number of hydrogen bonds (Table 2) into a single three-dimensional framework, in which it is possible to identify substructures in one and two dimen-

Figure 1

The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 1 - y, z.]

sions. The anions alone form a one-dimensional substructure in the form of a molecular ladder or a chain of edge-fused rings. The anions and cations are linked into sheets by a combination of all of the hard (Desiraju & Steiner, 1999) hydrogen bonds, all of which have $D \cdots A$ distances that are short for their type, and the sheets are themselves linked into a continuous framework by a single soft $C-H \cdots O$ hydrogen bond.

Phosphonate atom O3 in the anion at (x, y, z) acts as a hydrogen-bond donor to phosphonate atom O4 in the anion at (x, y, 1 + z), so generating by translation a C(4) chain running parallel to the [001] direction. In addition, carboxy atom O1 at (x, y, z) acts as a hydrogen-bond donor to phosphonate atom O5 at $(1 - x, \frac{1}{2} - y, -\frac{1}{2} + z)$, so producing a C(6) chain parallel to [001] and generated by the 2_1 screw axis along $(\frac{1}{2}, \frac{1}{4}, z)$. The combination of the C(4) and C(6) motifs generates a molecular ladder along [001] (Fig. 2), which can alternatively be regarded as a chain of edge-fused $R_3^3(16)$ rings. The anion substructure thus contains two of the three hydrogen-bonded motifs most characteristic of phosphonic acids and phosphonate anions, but the third such motif, namely $R_2^2(8)$ rings, is absent.

There are eight [001] ladders running through each unit cell, viz. two generated by each of the screw axes at $x = 0, \frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$.

Figure 2

Part of the crystal structure of (I), showing the formation of a chain of edge-fused $R_3^3(16)$ rings containing anions only. For clarity, the unit-cell box and H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (#), dollar sign (\$) or ampersand (&) are at the symmetry positions (x, y, 1+z), (x, y, -1+z), (1-x, $\frac{1}{2}-y$, $-\frac{1}{2}+z$) and (1-x, $\frac{1}{2}-y$, $\frac{1}{2}+z$), respectively.

Figure 3

Stereoview of part of the crystal structure of (I), showing the formation, *via* the hard hydrogen bonds, of the (100) sheet at $x = \frac{1}{2}$.

For each of these values of *x*, the anion ladders are linked by cations, *via* N-H···O hydrogen bonds, into (100) sheets. The N atoms at (x, y, z) and (1 - x, 1 - y, z) are both components of the cation lying across the twofold rotation axis along $(\frac{1}{2}, \frac{1}{2}, z)$. These atoms act as hydrogen-bond donors to phosphonate atoms O5 in the anions at (x, y, z) and (1 - x, 1 - y, z), respectively, which lie in the anion ladders along $(\frac{1}{2}, \frac{1}{4}, z)$ and $(\frac{1}{2}, \frac{3}{4}, z)$, respectively. Propagation of these hydrogen bonds thus links all of the cations lying across rotation axes having $x = \frac{1}{2}$ and all of the anion ladders generated by 2_1 screw axes having $x = \frac{1}{2}$ into a (100) sheet built from $R_6^6(40)$ rings (Fig. 3).

Four (100) sheets pass through each unit cell, and these sheets are linked by $C-H\cdots O$ hydrogen bonds (Table 2 and Fig. 4) into a three-dimensional framework. Atoms C13 at (x, y, z) and (1 - x, 1 - y, z), which are components of the cation lying across the twofold rotation axis along $(\frac{1}{2}, \frac{1}{2}, z)$, act as hydrogen-bond donors, respectively, to phosphonate atoms O4 in the anions at $(\frac{1}{4} + x, \frac{3}{4} - y, -\frac{1}{4} + z)$ and $(\frac{3}{4} - x, \frac{1}{4} + y, -\frac{1}{4} + z)$. These two anions lie, respectively, in the (100) sheets generated by the axes at $x = \frac{3}{4}$ and $\frac{1}{4}$, and propagation by the space group of this single type of soft hydrogen bond links all of the (100) sheets into a single framework.

Thus, a single type of hydrogen bond, namely $O-H\cdots O$, gives rise to a one-dimensional substructure; the combination of two types of hydrogen bond, namely $O-H\cdots O$ and $N-H\cdots O$, gives rise to a two-dimensional substructure; and the combination of three types of hydrogen bond, namely $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$, generates the entire three-dimensional structure. The anion substructure, in particular, differs from those found in the corresponding salts formed from 4,4'-bipyridyl and 1,2-bis(4-pyridyl)ethane.

In contrast to (I), the simple salt 4,4'-trimethylenedipyridinium dinitrate, (II) (Lee *et al.*, 2003), whose constitution precludes the formation of $O-H\cdots O$ hydrogen bonds, contains just three-component aggregates containing a pair of $N-H\cdots O$ hydrogen bonds, but with no significant $C-H\cdots O$ hydrogen bonds between these aggregates. On the other hand, there are strong electrostatic interactions between adjacent

Figure 4

Stereoview of part of the crystal structure of (I), showing the linking of the (100) sheets into a single framework by a single type of $C-H\cdots O$ hydrogen bond.

organic compounds

pyridinium rings and nitrate ions, whose planes are nearly parallel to one another. Note also the contrast between (II) and the hydrated nitrate, (III), formed by 1,2-bis(4-pyridyl)-ethane and containing a monoprotonated diamine (Almeida Paz *et al.*, 2003). In (III), the cations are linked into chains by $N-H \cdots N$ hydrogen bonds, and the nitrate ions and water molecules form hydrogen-bonded layers, but there are no hard hydrogen bonds between cations and anions.

Experimental

Stoichiometric quantities of 4,4'-trimethylenedipyridine and carboxymethylphosphonic acid (both purchased from Aldrich) were dissolved separately in methanol. The solutions were mixed and the mixture set aside to crystallize, providing analytically pure (I). Analysis found: C 42.8, H 5.2, N 5.8%; $C_{17}H_{24}N_2O_{10}P_2$ requires: zC 42.7, H 5.1, N 5.9%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

Crystal data

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.6064P]

$C_{13}H_{16}N_2^{2+} \cdot 2C_2H_4O_5P^-$ $M_r = 478.32$ Orthorhombic, <i>Fdd2</i> a = 27.366 (2) Å b = 32.347 (2) Å c = 4.8818 (3) Å V = 4321.4 (5) Å ³ Z = 8 $D_x = 1.470$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from 2418 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 150 (1) K Needle, colourless $0.16 \times 0.06 \times 0.06 \text{ mm}$		
Data collection			
Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (<i>DENZO–SMN</i> ; Otwinowski & Minor, 1997) $T_{min} = 0.886, T_{max} = 0.990$ 7640 measured reflections	2418 independent reflections 1864 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 27.5^{\circ}$ $h = -35 \rightarrow 34$ $k = -37 \rightarrow 42$ $l = -6 \rightarrow 6$		
Refinement			
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.103$ S = 1.05 2418 reflections 144 parameters	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.24 \text{ e} \text{ Å}^{-3}$ Extinction correction: <i>SHELXL</i> 97 Extinction coefficient: 0.00136 (19) Absolute structure: Flack (1983),		

Crystals of (I) are orthorhombic and the space group Fdd2 was assigned uniquely from the systematic absences. All H atoms were located from difference maps and were subsequently treated as riding atoms, with C-H distances of 0.95 (aromatic) or 0.99 Å (CH₂), N-H distances of 0.88 Å and O-H distances of 0.84 Å. The correct orientation of the structure with respect to the polar axis was established using the Flack (1983) parameter.

1029 Friedel pairs

Flack parameter = 0.06 (13)

Table 1

Selected geometric parameters (Å, °).

P1-O3 1.568 (2) C1-O1 1.317 P1-O4 1.495 (2) C1-O2 1.214 P1-O5 1.511 (2) 1.214				
P1-O5 1.511 (2)	P1-O3 P1-O4	1.568 (2) 1.495 (2)	C1-O1 C1-O2	1.317 (4) 1.214 (4)
$C13-C14-C17-C18$ -65.0 (3) $C14-C17-C18-C17^{i}$ 177.8	P1-O5 C13-C14-C17-C18	1.511(2) -65.0(3)	C14-C17-C18-C17 ⁱ	177.8 (2)

Symmetry code: (i) 1 - x, 1 - y, z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots O5^{ii}$	0.84	1.77	2.598 (3)	170
O3−H3···O4 ⁱⁱⁱ	0.84	1.73	2.537 (3)	160
$N1 - H1A \cdots O5$	0.88	1.75	2.624 (3)	171
$C13-H13\cdots O4^{iv}$	0.95	2.48	3.419 (4)	167

Symmetry codes: (ii) $1 - x, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) x, y, 1 + z; (iv) $\frac{1}{4} + x, \frac{3}{4} - y, z - \frac{1}{4}$.

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the University of Toronto using a diffractometer purchased with funds from the NSERC, Canada.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1644). Services for accessing these data are described at the back of the journal.

References

- Almeida Paz, F. A., Khimyak, Y. Z. & Klinowski, J. (2003). Acta Cryst. E59, 0132–0134.
- Bowes, K. F., Ferguson, G., Lough, A. J., Zakaria, C. M. & Glidewell, C. (2003). Acta Cryst. B59, 87–99.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86–89. Oxford University Press.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lee, T. W., Lau, J. P. K. & Szeto, L. (2003). Acta Cryst. E59, 0792-0793.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.