Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4,4'-Trimethylenedipyridinium bis-[carboxymethylphosphonate(1-)]: a three-dimensional framework structure built from $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$, $\mathrm{N} — \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Katharine F. Bowes, ${ }^{\text {a }}$ George Ferguson, ${ }^{\text {a }} \boldsymbol{+}$ Alan J. Lough ${ }^{\text {b }}$ and Christopher Glidewell ${ }^{\text {a* }}$

${ }^{\text {a }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, and ${ }^{\mathbf{b}}$ Lash Miller Chemical Laboratories, University of Toronto, Ontario, Canada M5S 3H6 Correspondence e-mail: cg@st-andrews.ac.uk

Received 27 May 2003
Accepted 28 May 2003
Online 22 July 2003

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{P}^{-}$, the cation lies across a twofold rotation axis in space group Fdd2. The anions are linked into molecular ladders by two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{H} \cdots \mathrm{O}=1.73$ and $1.77 \AA, \quad \mathrm{O} \cdots \mathrm{O}=2.538(2)$ and 2.598 (3) \AA, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=160$ and 170°], these ladders are linked into sheets by a single type of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{H} \cdots \mathrm{O}=1.75 \AA, \quad \mathrm{~N} \cdots \mathrm{O}=2.624(3) \AA$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}=171^{\circ}$] and the sheets are linked into a threedimensional framework by a single type of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{H} \cdots \mathrm{O}=2.48 \AA, \mathrm{C} \cdots \mathrm{O}=3.419$ (4) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=167^{\circ}$.

Comment

We have described recently the supramolecular structures of the adducts formed by carboxymethylphosphonic acid [phosphonoacetic acid, $\mathrm{HOOCCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$] with both $4,4^{\prime}$-bipyridyl $\left(\mathrm{NC}_{5} \mathrm{H}_{4}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, where a $1: 1$ adduct is formed, and 1,2-bis(4-pyridyl)ethane $\left(\mathrm{NC}_{5} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, where a 1:2 adduct is formed (Bowes et al., 2003). These two adducts are both salts, with constitutions $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{P}^{-}$and $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{P}^{-}$, respectively. In the $4,4^{\prime}$-bipyridyl adduct, the anions form simple $C(4)$ chains that are linked by the cations into sheets of $R_{6}^{6}(38)$ rings, which in turn are linked by multiple $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the 1,2 -bis($4-$ pyridyl) adduct, on the other hand, the anions alone form sheets of alternating $R_{2}^{2}(12)$ and $R_{6}^{6}(28)$ rings, which are linked by the cations into a three-dimensional framework. Continuing this study, we have prepared and structurally

[^0]characterized the title compound, (I), the adduct formed between $4,4^{\prime}$-trimethylenedipyridine and carboxymethylphosphonic acid.

(I)

Compound (I) (Fig. 1) is a salt, $\left[\mathrm{HNC}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right.$ $\mathrm{NH}]^{2+} \cdot 2\left[\mathrm{HOOCCH}_{2} \mathrm{P}(\mathrm{O})_{2}(\mathrm{OH})\right]^{-}$, in which complete transfer of H atoms, to the N atom from one of the phosphonate O atoms, has occurred. The cation lies across a twofold rotation axis in space group $F d d 2$ and, for the reference cation, this axis was selected as that along $\left(\frac{1}{2}, \frac{1}{2}, z\right)$. The anion lies in a general position. In the anion, the $\mathrm{P}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ distances (Table 1) are fully consistent with the H -atom locations deduced from difference maps. In the cation, the central $\mathrm{C} 14-\mathrm{C} 17-\mathrm{C} 18-$ $\mathrm{C} 17^{\mathrm{i}}-\mathrm{C} 14^{\mathrm{i}}$ fragment [symmetry code: (i) $1-x, 1-y, z$] is effectively planar, with an all-trans conformation (Table 1), but the pyridinium ring is rotated out of this plane. All other bond lengths and angles have unexceptional values.

The ions are linked by a small number of hydrogen bonds (Table 2) into a single three-dimensional framework, in which it is possible to identify substructures in one and two dimen-

Figure 1
The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) $1-x, 1-y, z$.]
sions. The anions alone form a one-dimensional substructure in the form of a molecular ladder or a chain of edge-fused rings. The anions and cations are linked into sheets by a combination of all of the hard (Desiraju \& Steiner, 1999) hydrogen bonds, all of which have $D \cdots A$ distances that are short for their type, and the sheets are themselves linked into a continuous framework by a single soft $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Phosphonate atom O3 in the anion at (x, y, z) acts as a hydrogen-bond donor to phosphonate atom O 4 in the anion at $(x, y, 1+z)$, so generating by translation a $C(4)$ chain running parallel to the [001] direction. In addition, carboxy atom O1 at (x, y, z) acts as a hydrogen-bond donor to phosphonate atom O5 at ($1-x, \frac{1}{2}-y,-\frac{1}{2}+z$), so producing a $C(6)$ chain parallel to [001] and generated by the 2_{1} screw axis along $\left(\frac{1}{2}, \frac{1}{4}, z\right)$. The combination of the $C(4)$ and $C(6)$ motifs generates a molecular ladder along [001] (Fig. 2), which can alternatively be regarded as a chain of edge-fused $R_{3}^{3}(16)$ rings. The anion substructure thus contains two of the three hydrogen-bonded motifs most characteristic of phosphonic acids and phosphonate anions, but the third such motif, namely $R_{2}^{2}(8)$ rings, is absent.

There are eight [001] ladders running through each unit cell, $v i z$. two generated by each of the screw axes at $x=0, \frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$.

Figure 2
Part of the crystal structure of (I), showing the formation of a chain of edge-fused $R_{3}^{3}(16)$ rings containing anions only. For clarity, the unit-cell box and H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (\#), dollar sign (\$) or ampersand (\&) are at the symmetry positions $(x, y, 1+z),(x, y,-1+z),\left(1-x, \frac{1}{2}-y\right.$, $\left.-\frac{1}{2}+z\right)$ and $\left(1-x, \frac{1}{2}-y, \frac{1}{2}+z\right)$, respectively.

Figure 3
Stereoview of part of the crystal structure of (I), showing the formation, via the hard hydrogen bonds, of the (100) sheet at $x=\frac{1}{2}$.

For each of these values of x, the anion ladders are linked by cations, via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, into (100) sheets. The N atoms at (x, y, z) and $(1-x, 1-y, z)$ are both components of the cation lying across the twofold rotation axis along $\left(\frac{1}{2}, \frac{1}{2}\right.$, $z)$. These atoms act as hydrogen-bond donors to phosphonate atoms O 5 in the anions at (x, y, z) and $(1-x, 1-y, z)$, respectively, which lie in the anion ladders along $\left(\frac{1}{2}, \frac{1}{4}, z\right)$ and $\left(\frac{1}{2}, \frac{3}{4}, z\right)$, respectively. Propagation of these hydrogen bonds thus links all of the cations lying across rotation axes having $x=\frac{1}{2}$ and all of the anion ladders generated by 2_{1} screw axes having $x=\frac{1}{2}$ into a (100) sheet built from $R_{6}^{6}(40)$ rings (Fig. 3).

Four (100) sheets pass through each unit cell, and these sheets are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 4) into a three-dimensional framework. Atoms C13 at (x, $y, z)$ and $(1-x, 1-y, z)$, which are components of the cation lying across the twofold rotation axis along $\left(\frac{1}{2}, \frac{1}{2}, z\right)$, act as hydrogen-bond donors, respectively, to phosphonate atoms O 4 in the anions at $\left(\frac{1}{4}+x, \frac{3}{4}-y,-\frac{1}{4}+z\right)$ and $\left(\frac{3}{4}-x, \frac{1}{4}+y\right.$, $-\frac{1}{4}+z$). These two anions lie, respectively, in the (100) sheets generated by the axes at $x=\frac{3}{4}$ and $\frac{1}{4}$, and propagation by the space group of this single type of soft hydrogen bond links all of the (100) sheets into a single framework.

Thus, a single type of hydrogen bond, namely $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, gives rise to a one-dimensional substructure; the combination of two types of hydrogen bond, namely $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$, gives rise to a two-dimensional substructure; and the combination of three types of hydrogen bond, namely O $\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, generates the entire threedimensional structure. The anion substructure, in particular, differs from those found in the corresponding salts formed from 4,4'-bipyridyl and 1,2-bis(4-pyridyl)ethane.

In contrast to (I), the simple salt 4, 4^{\prime}-trimethylenedipyridinium dinitrate, (II) (Lee et al., 2003), whose constitution precludes the formation of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, contains just three-component aggregates containing a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, but with no significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between these aggregates. On the other hand, there are strong electrostatic interactions between adjacent

Figure 4
Stereoview of part of the crystal structure of (I), showing the linking of the (100) sheets into a single framework by a single type of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.
pyridinium rings and nitrate ions, whose planes are nearly parallel to one another. Note also the contrast between (II) and the hydrated nitrate, (III), formed by 1,2-bis(4-pyridyl)ethane and containing a monoprotonated diamine (Almeida Paz et al., 2003). In (III), the cations are linked into chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, and the nitrate ions and water molecules form hydrogen-bonded layers, but there are no hard hydrogen bonds between cations and anions.

Experimental

Stoichiometric quantities of $4,4^{\prime}$-trimethylenedipyridine and carboxymethylphosphonic acid (both purchased from Aldrich) were dissolved separately in methanol. The solutions were mixed and the mixture set aside to crystallize, providing analytically pure (I). Analysis found: C 42.8, H 5.2, N $5.8 \% ; \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2}$ requires: zC 42.7, H 5.1, N 5.9\%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{P}^{-}$
$M_{r}=478.32$
Orthorhombic, Fdd2
$a=27.366$ (2) Å
$b=32.347$ (2) \AA
$c=4.8818$ (3) A
$V=4321.4(5) \AA^{3}$
$Z=8$
$D_{x}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2418
reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Needle, colourless
$0.16 \times 0.06 \times 0.06 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.886, T_{\max }=0.990$
7640 measured reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044\)
\(w R\left(F^{2}\right)=0.103\)
\(S=1.05\)
2418 reflections
144 parameters
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0427 P)^{2}\right.\)
    \(+0.6064 P\) ]
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
```

Crystals of (I) are orthorhombic and the space group Fdd2 was assigned uniquely from the systematic absences. All H atoms were located from difference maps and were subsequently treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic) or $0.99 \AA\left(\mathrm{CH}_{2}\right), \mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.84 \AA$. The correct orientation of the structure with respect to the polar axis was established using the Flack (1983) parameter.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

P1-O3	$1.568(2)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.317(4)$
$\mathrm{P} 1-\mathrm{O} 4$	$1.495(2)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.214(4)$
$\mathrm{P} 1-\mathrm{O} 5$	$1.511(2)$		
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17-\mathrm{C} 18$	$-65.0(3)$	$\mathrm{C} 14-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 17^{\mathrm{i}}$	$177.8(2)$

Symmetry code: (i) $1-x, 1-y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 5^{\text {ii }}$	0.84	1.77	2.598 (3)	170
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {iii }}$	0.84	1.73	2.537 (3)	160
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}$	0.88	1.75	2.624 (3)	171
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 4^{\text {iv }}$	0.95	2.48	3.419 (4)	167

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the University of Toronto using a diffractometer purchased with funds from the NSERC, Canada.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1644). Services for accessing these data are described at the back of the journal.

References

Almeida Paz, F. A., Khimyak, Y. Z. \& Klinowski, J. (2003). Acta Cryst. E59, o132-o134.
Bowes, K. F., Ferguson, G., Lough, A. J., Zakaria, C. M. \& Glidewell, C. (2003). Acta Cryst. B59, 87-99.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86-89. Oxford University Press.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lee, T. W., Lau, J. P. K. \& Szeto, L. (2003). Acta Cryst. E59, o792-o793.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: \dagger Permanent address: Department of Chemistry, University of Guelph, Ontario, Canada N1G 2W1.

